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Appendix A.  

Traditional Approaches to Person-Centered Research 

Midpoint Splits. At the most basic level, studies interested in the identification of employees 

presenting distinct profiles on a set of commitment components have relied on a midpoint split 

approach to identify subgroups (e.g., Baugh & Roberts, 1994; Carson, Carson, Roe, Birkenmeier, & 

Philips, 1999; Somers & Birnbaum, 2000). More precisely, these studies have divided employees into 

subgroups according to whether they presented a high or low level on a set of commitment 

components, defining high and low levels according to some indicator of the sample-specific midpoint 

on the various measures used to assess the commitment component. Although interesting for initial 

exploratory purposes, this approach is importantly limited by its reliance on artificially-created 

subgroups that may not exist in nature (as illustrated by the theoretical Invested profile described 

earlier presenting an AC/CC dominated profile) and may conceal potentially important subgroups 

(such as moderately committed employees).  

Interaction Effects. Although anchored within a variable-centered approach, some studies have 

investigated whether the effects of specific commitment components on a set of outcomes changed as 

a function of their levels on other commitment components using tests of interactions (Marsh, Hau, 

Wen, Nagengast, & Morin, 2013) among various commitment components (e.g., Gellatly, Meyer, & 

Luchak, 2006; Johnson, Groff, & Taing, 2009; Snape & Redman, 2003). Although these studies do 

indeed provide an efficient test of some of the key questions considered previously within a person-

centered perspective, they still present multiple limitations in contrast to the mixture modeling 

approach advocated in this chapter. First, interaction effects involving more than three components are 

likely to be impossible to properly interpret within the limitations of the human brain. In contrast, 

profiles can easily be identified, and interpreted, even if based on multiple components. Second, 

interactions effects still assume the linearity of the effects across levels of the interacting variables. It 

is possible to incorporate non-linear terms (which have been showed to be potentially important to 

consider in commitment research; e.g. Morin, Vandenberghe, Turmel, Madore, & Maïano, 2013) in 

addition to the interactions themselves and even interactions among non-linear terms (Edwards, 2007). 

However, in interpretative limits are then likely to be reached with as few as two interacting terms.  
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Cluster Analyses. Cluster analyses are naturally suited to the identification of profiles (e.g., Becker 

& Billings, 1993; Swailes, 2004; Tsoumbris & Xenikou, 2010). However, cluster analyses present 

multiple technical limitations (e.g., Morin, Morizot et al., 2011) that can be avoided by the reliance on 

more flexible mixture models. For instance, cluster analyses do not provide clear guidelines to help in 

the identification of the correct number of profiles present in the data. Similarly, cluster analyses 

results are highly sensitive to the distributions of the variables used in the clustering process, and to the 

retained classification algorithm. More importantly, cluster analyses rely on rigid assumptions that 

often fail to hold with real-life data and can easily be relaxed in the context of mixture models (e.g., 

Muthén, 2002; Vermunt & Magidson, 2002) such as conditional independence (i.e., the indicators are 

uncorrelated conditional on the classification; e.g., Uebersax, 1999), class-invariant variances (the 

variances of the indicators are the same across profiles; e.g., Morin, Maïano, et al., 2011; Peugh & 

Fan, 2013), and exact assignment whereby each individual is assumed to correspond entirely to a 

single profile (although recent clustering methods provide ways to circumvent at least some of these 

limitations, such as fuzzy clustering which allows participants to assume partial membership into 

multiple profiles, see Brusco, Steinley, Cradit, & Singh, 2012). Although it is true that simulation 

studies have shown cluster analyses to be quite efficient at recovering true classification patterns 

present at the population level (e.g., Steinley & Brusco, 2011), this efficiency is limited to situations 

where the only objective of the research is to achieve a classification of participants into distinct 

subgroups based on indicators presenting no form of residual relations with one another. In contrast, 

whenever these assumptions need to be relaxed to properly model the data (see later discussion of 

factor mixture models), or when there is a need to incorporate predictors or outcomes to the model, 

then mixture models are preferable to cluster analyses. Indeed, being solely a classification process, 

cluster analyses do not provide the possibility to directly incorporate predictors or outcomes into the 

model without relying on suboptimal two-steps strategies (e.g., Bolck, Croon, & Hagenaars, 2004).  
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Appendix B.  

Technical Considerations in the Estimation of Mixture Models 

Mixture Indicators. Mixture models are usually estimated using scale scores on the various 

indicators (commitment components; i.e., taking the sum or average on the items used to assess a 

component and using this aggregated score as the indicator). Although it is well known that using 

latent variables controlled for measurement error (i.e., models where the items are used to estimate 

latent factors, which are then used as mixture indicators) provides a much stronger approach (e.g., 

Bollen, 1989), applications of fully latent mixture models are few (e.g., Morin, Scalas, & Marsh, 

2015). In fact, given the complexity of mixture models it is often impossible in practice to implement a 

fully latent approach to their estimation. An alternative, which is becoming more frequent in recent 

applications of mixture models, is to rely on factor scores saved from preliminary measurement 

models (e.g., Kam, Morin, Meyer, & Topolnytsky, 2015; Morin & Marsh, 2015). Factors scores do not 

explicitly control for measurement errors the way latent variables do. However, by giving more weight 

to items presenting lower levels of measurement errors, they still provide a partial implicit control for 

measurement errors, making them a stronger alternative than scale scores. An added advantage of 

factors scores is that when they are estimated from more complex measurement models (including 

methodological controls, bifactor models, exploratory structural equation models, etc.) they tend to 

preserve the nature of the underlying measurement structure better than sale scores. More importantly, 

preliminary measurement models can be used to systematically assess the measurement invariance of 

the measures across time or groups (Millsap, 2011) and then save factor scores from the most invariant 

measurement model. This approach ensures comparability of the results over time or groups for 

multiple group, or longitudinal, applications of mixture models. Furthermore, factors scores are 

naturally standardized with a mean of zero and a variance of one, making them perfect for the 

application of the profile labeling scheme described in the chapter.  

Random Starts. An important challenge in mixture models is to avoid converging on a local 

solution (i.e., a false maximum likelihood). More precisely, mixture models are estimated through an 

iterative process that risks converging on a local solution rather than on a true maximum likelihood 

when starts values are not adequate (Hipp & Bauer, 2006). To limit this risk, models should be 
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estimated with multiple sets of random start values (Hipp & Bauer, 2006; McLachlan & Peel, 2000). 

As far as random starts go, the basic rule is “The more, the better,” keeping in mind that more also 

requires more computational time. However, in published person-centered research, researchers all 

seems to possess their own interpretation of how many starts values is optimal. In practice, our 

recommendation is to use at least 3000 sets of random starts, 100 iterations of reach of these sets of 

starts values, and to retain at least the 100 best sets of starts values for final stage optimization. These 

values can be increased to 5000, 200, and 2000 when the final solution is not sufficiently replicated. 

We see these values as a minimum that can be increased as needed.  

Class Enumeration. Typically, alternative solutions including increasing number of latent profiles 

(from one to a number typically above theoretical expectations but typically under 10) are contrasted 

in order to select the final solution in a mainly exploratory manner (but see Finch & Bronk, 2011, for 

confirmatory applications). As noted in the chapter, selection of the optimal number of profiles is 

determined based on inspection of: (a) the substantive meaning and theoretical conformity of the 

solution; (b) the statistical adequacy of the solution and (c) statistical indicators. We focus here on 

these statistical indicators. Although conventional indicators of the absolute fit of a model (e.g., 

RMSEA) are not available for mixture models, several indicators of relative fit are available: The 

Akaike Information Criterion (AIC), the Consistent AIC (CAIC), the Bayesian information criterion 

(BIC), and the sample-adjusted BIC (SABIC). A lower value on these indicators suggests a better-

fitting model. Classical likelihood ratio tests (LRT) are appropriate for the comparisons of nested 

models based on the same variables and number of profiles, but inappropriate for class enumeration 

purposes. However, two LRT approximations are available for this purpose: The Lo, Mendel and 

Rubin’s (2001) LRT (the standard and adjusted version of this test typically yield the same 

conclusions), and the Bootstrap LRT (BLRT; McLachlan & Peel, 2000). These tests compare a k-

profile model with a k-1-profile model. Non-significant p values indicate that the k-1 profile model 

should be retained. Finally, although it should not be used for class enumeration purposes the entropy 

provides a useful indication of the precision with which the cases are classified into the profiles, with 

larger values (closer to 1) indicating fewer classification errors. Multiple simulation studies have 

looked at the relative efficacy of these various indicators, and show that the BIC, SABIC, CAIC and 
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BLRT appear particularly effective (Henson et al., 2007; McLachlan & Peel, 2000; Nylund, 

Asparouhov, & Muthén, 2007; Peugh & Fan, 2013; Tein, Coxe, & Cham, 2013; Tofighi & Enders, 

2008; Tolvanen, 2007; Yang, 2006). When these indicators fail to retain the optimal model, the BIC 

and CAIC tend to underestimate the true number of profiles, while the AIC, ABIC, and BLRT tend to 

overestimate it. However, these indicators are heavily influenced by sample size (Marsh et al., 2009), 

which means that with a sufficiently large sample, they may keep on suggesting the addition of 

profiles without ever converging on a preferable solution. When this happens, it is recommended to 

present these indicators in the format of “elbow plots” (Morin, Maïano, et al., 2011; Petras & Masyn, 

2010). These plots illustrate the gains in fit associated with the addition of profiles, and the point after 

which the slope flattens is typically indicates the optimal number of profiles.  
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Appendix C.  

Mplus Input Code for the Estimation of Mixture Models  
 

In Mplus syntax, text sections preceded by an exclamation mark (!) are annotations.  
 

DATA: 
The first part of the Mplus syntax identify the data set to be used in the analysis. If the data set is in the 
same folder as the input file, only the name of the data set needs to be indicated. If the data set is in 
another folder, then the full path needs to be specified. Here, the data set is labeled “Commitment.dat” 
and is located in the same folder.  
 

DATA:  
FILE IS Commitment.dat; 
 

VARIABLE:  
In the VARIABLE section, the NAMES function identifies all variables included in the data set, in 
order of appearance. The USEVARIABLES function defines the variables to be used in the analysis. 
The MISSING function defines the missing data code (we typically use the same code for all 
variables). The IDVARIABLE function defines the unique identifier for participants. The CLASSES 
function defines the number of latent profiles to be estimated (here 3). The USEOBS function can be 
used to limit the estimation to a subset of participants (here, we limit the estimation to employees 
(identified in the variable Status, coded 1 for employees, and 2 for supervisors). The CLUSTER 
function can be used to define the unique identifier for the clustering (level 2) variable to be controlled 
in the analysis (e.g., the work unit). 
 

VARIABLE: 
NAMES = ID Status unit Pred1 Pred2 Cor1 Cor2 Out1 Out2 AC1 NC1 CC1 AC2 NC2 CC2;  
USEVARIABLES = AC1 NC1 CC1;  
MISSING = all (999); 
IDVARIABLE = ID; 
CLASSES = c (3); 
! CLUSTER = P5Code; 
! USEOBS Status EQ 2; 
 

ANALYSIS: 
The ANALYSIS section described the analysis itself. Here, we request the estimation of a mixture 
model (TYPE = MIXTURE) including a correction for the nesting of employees within work unit 
(TYPE = COMPLEX) and using the robust maximum likelihood estimator (ESTIMATOR = MLR). 
STARTS = 3000 100 requests 3000 sets of random start values, with the best 100 of these starts 
retained for final stage optimization. STITERATIONS = 100 requests that all random starts be allowed 
a total of 100 iterations. PROCESS = 3 requires that the model be estimated using 3 of the available 
processors to speed up the estimation. 
 

Analysis: 
TYPE = MIXTURE COMPLEX;  
ESTIMATOR = MLR; 
PROCESS = 3;  
STARTS = 3000 100; STITERATIONS = 100; 
 

The best way to ensure that the final solution represents a true maximum likelihood rather than a local 
solution is to increase the number of starts values. As part of the output, Mplus provides the 
loglikelihood values associated with all of the random starts retained for the final stage optimization. It 
will also indicate how many of the start value runs did not converge. 
 

RANDOM STARTS RESULTS RANKED FROM THE BEST TO THE WORST LOGLIKELIHOOD VALUES 
15 perturbed starting value run(s) did not converge. 
Final stage loglikelihood values at local maxima, seeds, and initial stage start numbers: 
           -6095.887  991399           1433 
           -6095.887  165268           2436 
           -6095.887  551639           55 
           -6095.887  58353            1723 
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           -6095.887  168648           1788 
           -6095.887  445692           2796 
           -6095.887  973369           202 
           -6095.887  623887           2611 
           -6096.828  163110           584 
           -6096.828  762461           425 
           -6096.828  62715            2599 
           -6104.647  264951           1130 
           -6104.647  930872           277 
           -6104.647  670998           1876 
           -6104.698  98068            998 
           -6105.491  361131           2563 
           -6105.491  293428           2473 
           -6105.491  18741            2970 
           -6106.248  415502           194 
           -6106.682  338858           1342 
           -6106.682  824956           607 

… 
In this example, the best loglikelihood value was replicated 8 times (in bold, the number of times the 
value of -6095.887 appears in the first column), which is satisfactory. Although no clear-cut rule 
exists, we suggest that solutions should be replicated at least 5 times. Failing to do so, additional tests 
should be conducted while increasing the number of start values and/or iterations or using user-defined 
starts values (for instance, using the starts values from the best fitting solution provided when 
requesting SVALUES in the output section of the syntax and using these starts values in the model 
while keeping the random starts function active – we provide an example below). The second column 
provides the model seed associated with each random start. Using the seed provides an easy way to 
replicate the final solution (or any other solution) while decreasing computational time. To do so, the 
following ANALYSIS section can be used to replicate the above solution. This seed however will not 
ensure that the solution is replicated if additional covariates are added to the model (SVALUES then 
need to be used).  
Analysis: 
TYPE = MIXTURE COMPLEX;  
ESTIMATOR = MLR; 
PROCESS = 3;  
STARTS = 0;  
OPTSEED = 991399;  
STITERATIONS = 100; 

 
OUTPUT:  
The last section of the syntax covers specific sections of the output that are requested. Here we request 
standardized model parameters (STDYX), sample statistics (SAMPSTAT), confidence intervals 
(CINTERVAL), the starts values corresponding to the solution (SVALUES), the residuals 
(RESIDUAL), the arrays of parameter specifications and starting values (TECH1), the profile-specific 
sample characteristics (TECH7), the LMR and aLMR (TECH11), and the BLRT (TECH14).  
 

OUTPUT: 
STDYX SAMPSTAT CINTERVAL SVALUES RESIDUAL TECH1 TECH7 TECH11 TECH14; 
 
MODEL:  
In between the ANALYSIS and OUTPUT section, the MODEL section describes the specific analysis 
to be conducted. We provide code, in sequence, for each of the models described in the manuscript.  
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Latent Profile Analysis 
The MODEL section includes an %OVERALL% section describing the global relations estimated 
among the constructs, and profile specific statements (here %c#1% to %c#3%, where c corresponds to 
the label used to define the categorical latent variable in the CLASSES command of the VARIABLE: 
section, and the number 1 to k refers to the specific value of this variable (the specific profile). Here, 
no relations are estimated between the variables so nothing appears in the %OVERALL% section. The 
profile specific sections request that the means (indicated by the name of the variable between brackets 
[]) and variances (indicated by the names) of the indicators be freely estimated in all profiles.  
 

MODEL: 
%OVERALL% 
%c#1% 
[AC1 NC1 CC1];  
AC1 NC1 CC1;  
%c#2% 
[AC1 NC1 CC1];  
AC1 NC1 CC1;  
%c#3% 
[AC1 NC1 CC1];  
AC1 NC1 CC1;  
 

Variances that are equal across profiles:  
MODEL: 
%OVERALL% 
%c#1% 
[AC1 NC1 CC1];  
%c#2% 
[AC1 NC1 CC1];  
%c#3% 
[AC1 NC1 CC1];  
 

With correlated uniquenesses (correlations are identified by WITH) among all profile indicators (not 
recommended) where the correlations are invariant across profiles:  
MODEL: 
%OVERALL% 
AC1 WITH NC1 CC1; NC1 WITH CC1;  
%c#1% 
[AC1 NC1 CC1];  AC1 NC1 CC1;  
%c#2% 
[AC1 NC1 CC1];  AC1 NC1 CC1;  
%c#3% 
[AC1 NC1 CC1];  AC1 NC1 CC1; 
 

With correlated uniquenesses among all profile indicators (not recommended) where the correlations 
are freely estimated in all profiles:  
MODEL: 
%OVERALL% 
AC1 WITH NC1 CC1; NC1 WITH CC1;  
%c#1% 
[AC1 NC1 CC1];  AC1 NC1 CC1;  
AC1 WITH NC1 CC1; NC1 WITH CC1;  
%c#2% 
[AC1 NC1 CC1];  AC1 NC1 CC1;  
AC1 WITH NC1 CC1; NC1 WITH CC1;  
%c#3% 
[AC1 NC1 CC1];  AC1 NC1 CC1; 
AC1 WITH NC1 CC1; NC1 WITH CC1;  
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When SVALUES are requested, the output will include a section similar to the following, this section 
can be cut-and-pasted and used as a replacement of the MODEL section represented above in 
conjunction with the STARTS function set to 0 (STARTS = 0) to replicate the final solution. This 
function is particularly useful when one wants to include covariates in a model while making sure that 
the final unconditional LPA solution remains unchanged.  
MODEL COMMAND WITH FINAL ESTIMATES USED AS STARTING VALUES 

   %OVERALL% 
     [ c#1*-0.93515 ]; 
     [ c#2*0.49113 ]; 
     %C#1% 
     [ CC1*0.39664 ]; 
     [ NC1*-0.93155 ]; 
     [ AC1*-1.59367 ]; 
     CC1*1.59137; 
     NC1*2.12542; 
    AC1*0.53789; 
     %C#2% 
     [CC1*-0.15201 ]; 
     [NC1*-0.29812 ]; 
     [AC1*-0.18248 ]; 
     CC1*0.72513; 
     NC1*0.43116; 
     AC1*0.42376; 
     %C#3% 
     [CC1*0.08333 ]; 
     [NC1*0.86526 ]; 
     [AC1*0.94111 ]; 
     CC1*1.13489; 
     NC1*0.48030; 
     AC1*0.44053; 
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Latent Profile Analysis with Covariates 
Predictors:  
Direct inclusion of predictors to the model is done by way of a multinomial logistic regression where 
the predictors are specified as having an impact on profile membership (c#1-c#4 ON Pred1 Pred2) in 
the %OVERALL% section.  
MODEL: 
%OVERALL% 
c#1-c#4 ON Pred1 Pred2; 
%c#1% 
[AC1 NC1 CC1];  
AC1 NC1 CC1;  
%c#2% 
[AC1 NC1 CC1];  
AC1 NC1 CC1;  
%c#3% 
[AC1 NC1 CC1];  
AC1 NC1 CC1;  

 
To make sure that the nature of the profiles remains unchanged by the inclusion of predictors, the 
SVALUES from the final solution can also be used.  
%OVERALL% 
[ c#1*-0.93515 ]; [ c#2*0.49113 ]; 
c#1-c#4 ON Pred1 Pred2; 
%C#1% 
[ CC1*0.39664 ]; [ NC1*-0.93155 ]; [ AC1*-1.59367 ]; 
CC1*1.59137;  NC1*2.12542;  AC1*0.53789; 
%C#2% 
[CC1*-0.15201 ]; NC1*-0.29812 ]; [AC1*-0.18248 ]; 
CC1*0.72513; NC1*0.43116; AC1*0.42376; 
%C#3% 
 [CC1*0.08333 ]; [NC1*0.86526 ]; [AC1*0.94111 ]; 
 CC1*1.13489; NC1*0.48030; AC1*0.44053; 

 
Among available AUXILIARY approaches, the R3STEP (see Asparouhov & Muthén, 2014) appears 
the most naturally suited to the exploration of predictors. This approach is similar to the multinomial 
logistic regression described above, but explicitly tests whether including the predictors resulted in a 
change in the nature of the profile. When this occurs (and the previous direct approaches did not 
work), then predictors needs to be treated as correlates. To use this approach, the following line of 
code needs to be included to the VARIABLE section 9 (in bold):  
VARIABLE: 
NAMES = ID Status unit Pred1 Pred2 Cor1 Cor2 Out1 Out2 AC1 NC1 CC1 AC2 NC2 CC2;  
USEVARIABLES = AC1 NC1 CC1;  
MISSING = all (999); 
IDVARIABLE = ID; 
CLASSES = c (3); 
AUXILIARY = Pred1 (R3STEP) Pred2 (R3STEP); 
With the Model section remaining unchanged (start values may help).  
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Outcomes:  
The direct inclusion of distal outcomes to the model involves adding them as additional mixture 
indicators, preferably while using the SVALUES from the final solution to ensure stability in the 
nature of the profiles. Parameter labels are given to the means of the outcome variables in each profile 
(in parentheses), and these labels can be used with the MODEL CONSTRAINT command to provide 
tests of significance of differences between profiles on the various outcomes.  
%OVERALL% 
[ c#1*-0.93515 ]; [ c#2*0.49113 ]; 
%C#1% 
[ CC1*0.39664 ]; [ NC1*-0.93155 ]; [ AC1*-1.59367 ]; 
CC1*1.59137;  NC1*2.12542;  AC1*0.53789; 
[Out1] (oa1); [Out2] (ob1); 
%C#2% 
[CC1*-0.15201 ]; NC1*-0.29812 ]; [AC1*-0.18248 ]; 
CC1*0.72513; NC1*0.43116; AC1*0.42376; 
[Out1] (oa2); [Out2] (ob2); 
%C#3% 
 [CC1*0.08333 ]; [NC1*0.86526 ]; [AC1*0.94111 ]; 
 CC1*1.13489; NC1*0.48030; AC1*0.44053; 
[Out1] (oa3); [Out2] (ob3); 
MODEL CONSTRAINT: 
! New parameters are created using this function and reflect pairwise mean differences between 
! profiles. e.g. y12 reflect the differences between the means of profiles 1 and 2 on Out1  
NEW (y12); 
y12 = oa1-oa2; 
NEW (y13); 
y13 = oa1-oa3; 
NEW (y23); 
y23 = oa2-oa3; 
NEW (z12); 
z12 = ob1-ob2 
NEW (z13); 
z13 = ob1-ob3; 
NEW (z23); 
z23 = ob2-ob3; 
 

Three alternative Auxiliary approaches (see Asparouhov & Muthén, 2014) are available. The first one 
is similar to the R3STEP approach and tests the degree to which continuous outcomes change the 
nature of the profiles. This approach can either allow for the variances of the outcomes to be freely 
estimated in all profiles (DU3STEP) or invariant across profiles (DE3STEP). A more recent alternative 
(BCH) has been shown to outperform these approaches, while ensuring the stability of the profile 
solutions. Finally, a last approach also ensures the stability of the profile solution, while 
accommodating continuous (DCON) and categorical (DCAT) outcomes. Our recommendation, based 
on current knowledge, would be to rely on the BCH approach for continuous outcomes and the DCAT 
approach for categorical outcomes.  
! Pick between these alternatives:  
AUXILIARY = Out1 (DU3STEP) Out2 (DU3STEP); 
AUXILIARY = Out1 (DE3STEP) Out2 (DE3STEP); 
AUXILIARY = Out1 (BCH) Out2 (BCH); 
AUXILIARY = Out1 (DCON) Out2 (DCON); 
AUXILIARY = Out1 (DCAT) Out2 (DCAT); 
 

Correlates:  
Correlates can be incorporated to the model via the Auxiliary A approach.  
AUXILIARY = Cor1 (e) Cor2 (e); 
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Factor Mixture Analysis 
Here we present the input for the factor mixture analytic model described in the main manuscript that 
provided a way to control for global levels shared among the indicators in order to estimate clearer 
latent profiles. Although this input is based on commitment mindsets, we reinforce that such a model 
would not be suitable for this context, and more appropriate to the estimation of profile analyses based 
on multiple targets of commitment to control for global mindeste tendendies (e.g. Morin, Morizot et 
al., 2011). The only difference with the previous LPA models is the introduction of a common factor 
model in the %OVERALL% section. This factor model is specified as invariant across profiles. This 
common factor is labeled G, and defined by the same indicators (BY defines factor loadings). All 
loadings on this factor are freely estimated (the * associated with the first indicators overrides the 
default of constraining the loading of the first factor to be 1). The factor variance thus needs to be 
fixed to 1 for identification purposes (the @ is used to fix a parameter to a specific value). Because the 
intercepts of the indicators of this factor will be freely estimated across profiles, the factor means 
needs to be fixed to 0 for identification purposes. 
 

MODEL: 
%OVERALL% 
G BY AC1* NC1 CC1;  
G@1; 
[G@0]; 
%c#1% 
[AC1 NC1 CC1];  
AC1 NC1 CC1;  
%c#2% 
[AC1 NC1 CC1];  
AC1 NC1 CC1;  
%c#3% 
[AC1 NC1 CC1];  
AC1 NC1 CC1;  
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Multiple-Group Latent Profile Analyses: Configural Invariance 
In the VARIABLE section, the multiple groups needs to be defined using the KNOWCLASS function, 
which uses a label (here we use cg) to define this new grouping variable, and the levels of this new 
grouping variables are defined as: (a) including participants with a value of 1 (Employees) on the 
variable Status, and (b) including participants with a value of 2 (supervisor) on the variable Status. 
There are now two “latent” grouping variables, C estimated as part of the model estimation (the 
profiles) and having k levels (here we are still working with a 3-profile solution) and CG reflecting the 
observed subgroups (Status) with 2 levels. Participants are allowed to be cross classified.  
 

KNOWCLASS = cg (Status = 1 Status = 2);  
CLASSES = cg (2) c (3); 
 

The %OVERALL% section is used to indicate that the class sizes are freely estimated in all observed 
samples (employees and supervisors) using the ON function (reflecting regressions) indicating that 
profile membership is conditional on status. k-1 statements are required (i.e., 2 for a 3-profile model). 
Profile-specific statements are then defined using a combination of the known classes CG and the 
estimated classes C. Labels in parentheses identify parameters that are estimated to be equal across 
groups. Here, none of the labels are shared between groups, so that the means and variances are freely 
estimated in all combinations of profiles and gender. Lists of constraints (m1-m3) apply to the 
parameters in order of appearance (m1 applies to AC1, m2 to NC1, m3 to CC1).  
%OVERALL% 
c#1 on cg#1; c#2 on cg#1; 
 
%cg#1.c#1% 
[AC1 NC1 CC1] (m1-m3);  
AC1 NC1 CC1 (v1-v3);  
%cg#1.c#2% 
[AC1 NC1 CC1] (m4-m6);  
AC1 NC1 CC1 (v4-v6);  
%cg#1.c#3% 
[AC1 NC1 CC1] (m7-m9);  
AC1 NC1 CC1 (v7-v9);  
 
%cg#2.c#1% 
[AC1 NC1 CC1] (mm1-mm3);  
AC1 NC1 CC1 (vv1-vv3);  
%cg#2.c#2% 
[AC1 NC1 CC1] (mm4-mm6);  
AC1 NC1 CC1 (vv4-vv6);  
%cg#2.c#3% 
[AC1 NC1 CC1] (mm7-mm9);  
AC1 NC1 CC1 (vv7-vv9);  
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Multiple-Group Latent Profile Analyses: Structural Invariance 
 
The only difference between this model and the previous one is that the means are constrained to be 
equal across status within each profile using identical labels in parentheses.  
 
%OVERALL% 
c#1 on cg#1; c#2 on cg#1; 
 
%cg#1.c#1% 
[AC1 NC1 CC1] (m1-m3);  
AC1 NC1 CC1 (v1-v3);  
%cg#1.c#2% 
[AC1 NC1 CC1] (m4-m6);  
AC1 NC1 CC1 (v4-v6);  
%cg#1.c#3% 
[AC1 NC1 CC1] (m7-m9);  
AC1 NC1 CC1 (v7-v9);  
 
%cg#2.c#1% 
[AC1 NC1 CC1] (m1-m3);  
AC1 NC1 CC1 (vv1-vv3);  
%cg#2.c#2% 
[AC1 NC1 CC1] (m4-m6);  
AC1 NC1 CC1 (vv4-vv6);  
%cg#2.c#3% 
[AC1 NC1 CC1] (m7-m9);  
AC1 NC1 CC1 (vv7-vv9);  

 
Multiple-Group Latent Profile Analyses: Dispersion Invariance 

 
The only difference between this model and the previous one is that the variances are constrained to be 
equal across status within each profile using identical labels in parentheses.  
 
%OVERALL% 
c#1 on cg#1; c#2 on cg#1; 
 
%cg#1.c#1% 
[AC1 NC1 CC1] (m1-m3);  
AC1 NC1 CC1 (v1-v3);  
%cg#1.c#2% 
[AC1 NC1 CC1] (m4-m6);  
AC1 NC1 CC1 (v4-v6);  
%cg#1.c#3% 
[AC1 NC1 CC1] (m7-m9);  
AC1 NC1 CC1 (v7-v9);  
 
%cg#2.c#1% 
[AC1 NC1 CC1] (m1-m3);  
AC1 NC1 CC1 (v1-vv3);  
%cg#2.c#2% 
[AC1 NC1 CC1] (m4-m6);  
AC1 NC1 CC1 (v4-vv6);  
%cg#2.c#3% 
[AC1 NC1 CC1] (m7-m9);  
AC1 NC1 CC1 (v7-vv9);  
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Multiple-Group Latent Profile Analyses: Distribution Invariance 

The only difference between this model and the previous one is that nothing appears in the 
%OVERALL% section of the input to reflect the fact that the sizes of the profiles are no longer 
conditional on status.  
 
%OVERALL% 
 
%cg#1.c#1% 
[AC1 NC1 CC1] (m1-m3); AC1 NC1 CC1 (v1-v3);  
%cg#1.c#2% 
[AC1 NC1 CC1] (m4-m6); AC1 NC1 CC1 (v4-v6);  
%cg#1.c#3% 
[AC1 NC1 CC1] (m7-m9); AC1 NC1 CC1 (v7-v9);  
 
%cg#2.c#1% 
[AC1 NC1 CC1] (m1-m3); AC1 NC1 CC1 (v1-vv3);  
%cg#2.c#2% 
[AC1 NC1 CC1] (m4-m6); AC1 NC1 CC1 (v4-vv6);  
%cg#2.c#3% 
[AC1 NC1 CC1] (m7-m9); AC1 NC1 CC1 (v7-vv9);  
 

Multiple-Group Latent Profile Analyses with Predictors: Relations Freely Estimated Across 
Subpopulations 

This models uses the SVALUES associated with the previous model of dispersion invariance 
(specified as * followed by the value of the estimated parameters), and simply include predictor effects 
on profile membership (c#1-c#2 ON Pred1 Pred2;). To allow these effects to be freely estimated 
across status, they need to be constrained to 0 in the %OVERALL% section, and freely estimated in 
both status groups in a new section of the input specifically referring to CG. See all sections in bold.  
 
%OVERALL% 
[ cg#1*-0.00217 ]; [ c#1*-0.93515 ]; [ c#2*0.49113 ]; 
c#1-c#2 ON Pred1@0 Pred2@0; 
%CG#1.C#1% 
 [ CC1*0.39664 ] (m1); [ NC1*-0.93155 ] (m2); [ AC1*-1.59367 ] (m3); 
CC1*1.59137 (v1);  NC1*2.12542 (v2);  AC1*0.53789 (v3); 
%CG#1.C#2% 
 [CC1*-0.15201 ] (m4); NC1*-0.29812 ] (m5); [AC1*-0.18248 ] (m6); 
CC1*0.72513 (v4); NC1*0.43116 (v5); AC1*0.42376 (v6); 
%CG#1.C#3% 
 [CC1*0.08333 ] (m7); [NC1*0.86526 ] (m8); [AC1*0.94111 ] (m9); 
 CC1*1.13489 (v7); NC1*0.48030 (v8); AC1*0.44053 (v9); 
%CG#2.C#1% 
 [ CC1*0.39664 ] (m1); [ NC1*-0.93155 ] (m2); [ AC1*-1.59367 ] (m3); 
CC1*1.59137 (v1);  NC1*2.12542 (v2);  AC1*0.53789 (v3); 
%CG#2.C#2% 
 [CC1*-0.15201 ] (m4); NC1*-0.29812 ] (m5); [AC1*-0.18248 ] (m6); 
CC1*0.72513 (v4); NC1*0.43116 (v5); AC1*0.42376 (v6); 
%CG#2.C#3% 
 [CC1*0.08333 ] (m7); [NC1*0.86526 ] (m8); [AC1*0.94111 ] (m9); 
 CC1*1.13489 (v7); NC1*0.48030 (v8); AC1*0.44053 (v9); 
MODEL cg: 
%cg#1% 
c#1-c#2 ON  Pred1 Pred2; 
%cg#2% 
c#1-c#2 ON  Pred1 Pred2; 
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Multiple-Group Latent Profile Analyses with Predictors: Predictive Invariance 
 
This model is almost identical to the previous one. In order for the effects of the predictors to be 
constrained to invariance across genders, they simply need to be specified as freely estimated in the 
%OVERALL% section (c#1-c#4 ON Pred1 Pred2;), while taking out the gender specific sections.  
 
%OVERALL% 
[ cg#1*-0.00217 ]; [ c#1*-0.93515 ]; [ c#2*0.49113 ]; 
c#1-c#2 ON Pred1 Pred2; 
%CG#1.C#1% 
 [ CC1*0.39664 ] (m1); [ NC1*-0.93155 ] (m2); [ AC1*-1.59367 ] (m3); 
CC1*1.59137 (v1);  NC1*2.12542 (v2);  AC1*0.53789 (v3); 
%CG#1.C#2% 
 [CC1*-0.15201 ] (m4); NC1*-0.29812 ] (m5); [AC1*-0.18248 ] (m6); 
CC1*0.72513 (v4); NC1*0.43116 (v5); AC1*0.42376 (v6); 
%CG#1.C#3% 
 [CC1*0.08333 ] (m7); [NC1*0.86526 ] (m8); [AC1*0.94111 ] (m9); 
 CC1*1.13489 (v7); NC1*0.48030 (v8); AC1*0.44053 (v9); 
%CG#2.C#1% 
 [ CC1*0.39664 ] (m1); [ NC1*-0.93155 ] (m2); [ AC1*-1.59367 ] (m3); 
CC1*1.59137 (v1);  NC1*2.12542 (v2);  AC1*0.53789 (v3); 
%CG#2.C#2% 
 [CC1*-0.15201 ] (m4); NC1*-0.29812 ] (m5); [AC1*-0.18248 ] (m6); 
CC1*0.72513 (v4); NC1*0.43116 (v5); AC1*0.42376 (v6); 
%CG#2.C#3% 
 [CC1*0.08333 ] (m7); [NC1*0.86526 ] (m8); [AC1*0.94111 ] (m9); 
 CC1*1.13489 (v7); NC1*0.48030 (v8); AC1*0.44053 (v9); 
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Multiple-Group Latent Profile Analyses with Outcomes: Relations Freely Estimated Across 
Subpopulations 

 
This model also uses the SVALUES associated with the model of dispersion invariance. Here, we 
simply request the free estimation of the distal outcome means in all profiles x status ([Out1 Out2]). 
We also use labels in parentheses to identify these new parameters, which will then be used in a new 
MODEL CONSTRAINT section to request tests of the significance of mean differences between 
profiles and genders.  
 
%OVERALL% 
[ cg#1*-0.00217 ]; [ c#1*-0.93515 ]; [ c#2*0.49113 ]; 
%CG#1.C#1% 
 [ CC1*0.39664 ] (m1); [ NC1*-0.93155 ] (m2); [ AC1*-1.59367 ] (m3); 
CC1*1.59137 (v1);  NC1*2.12542 (v2);  AC1*0.53789 (v3); 
[Out1] (oa1); 
[Out2] (ob1); 
%CG#1.C#2% 
 [CC1*-0.15201 ] (m4); NC1*-0.29812 ] (m5); [AC1*-0.18248 ] (m6); 
CC1*0.72513 (v4); NC1*0.43116 (v5); AC1*0.42376 (v6); 
[Out1] (oa2); 
[Out2] (ob2); 
%CG#1.C#3% 
 [CC1*0.08333 ] (m7); [NC1*0.86526 ] (m8); [AC1*0.94111 ] (m9); 
 CC1*1.13489 (v7); NC1*0.48030 (v8); AC1*0.44053 (v9); 
[Out1] (oa3); 
[Out2] (ob3); 
%CG#2.C#1% 
 [ CC1*0.39664 ] (m1); [ NC1*-0.93155 ] (m2); [ AC1*-1.59367 ] (m3); 
CC1*1.59137 (v1);  NC1*2.12542 (v2);  AC1*0.53789 (v3); 
[Out1] (oaa1); 
[Out2] (obb1); 
%CG#2.C#2% 
 [CC1*-0.15201 ] (m4); NC1*-0.29812 ] (m5); [AC1*-0.18248 ] (m6); 
CC1*0.72513 (v4); NC1*0.43116 (v5); AC1*0.42376 (v6); 
[Out1] (oaa2); 
[Out2] (obb2); 
%CG#2.C#3% 
 [CC1*0.08333 ] (m7); [NC1*0.86526 ] (m8); [AC1*0.94111 ] (m9); 
 CC1*1.13489 (v7); NC1*0.48030 (v8); AC1*0.44053 (v9); 
[Out1] (oaa3); 
[Out2] (obb3); 
 
MODEL CONSTRAINT: 
NEW (y12); y12 = oa1-oa2; 
NEW (y13); y13 = oa1-oa3; 
NEW (y23); y23 = oa2-oa3; 
NEW (z12); z12 = ob1-ob2 
NEW (z13); z13 = ob1-ob3; 
NEW (z23); z23 = ob2-ob3; 
NEW (yy12); yy12 = oaa1-oaa2; 
NEW (yy13); yy13 = oaa1-oaa3; 
NEW (yy23); yy23 = oaa2-oaa3; 
NEW (zz12); zz12 = obb1-obb2 
NEW (zz13); zz13 = obb1-obb3; 
NEW (zz23); zz23 = obb2-obb3; 
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Multiple-Group Latent Profile Analyses with Outcomes: Explanatory Invariance 
 
This model is almost identical to the previous one except that the parameter labels are used to 
constrain the outcome means to be invariant across status. As a result, less lines of code are required in 
the MODEL COSNTRAINT section.  
 
%OVERALL% 
[ cg#1*-0.00217 ]; [ c#1*-0.93515 ]; [ c#2*0.49113 ]; 
%CG#1.C#1% 
 [ CC1*0.39664 ] (m1); [ NC1*-0.93155 ] (m2); [ AC1*-1.59367 ] (m3); 
CC1*1.59137 (v1);  NC1*2.12542 (v2);  AC1*0.53789 (v3); 
[Out1] (oa1); 
[Out2] (ob1); 
%CG#1.C#2% 
 [CC1*-0.15201 ] (m4); NC1*-0.29812 ] (m5); [AC1*-0.18248 ] (m6); 
CC1*0.72513 (v4); NC1*0.43116 (v5); AC1*0.42376 (v6); 
[Out1] (oa2); 
[Out2] (ob2); 
%CG#1.C#3% 
 [CC1*0.08333 ] (m7); [NC1*0.86526 ] (m8); [AC1*0.94111 ] (m9); 
 CC1*1.13489 (v7); NC1*0.48030 (v8); AC1*0.44053 (v9); 
[Out1] (oa3); 
[Out2] (ob3); 
%CG#2.C#1% 
 [ CC1*0.39664 ] (m1); [ NC1*-0.93155 ] (m2); [ AC1*-1.59367 ] (m3); 
CC1*1.59137 (v1);  NC1*2.12542 (v2);  AC1*0.53789 (v3); 
[Out1] (oa1); 
[Out2] (ob1); 
%CG#2.C#2% 
 [CC1*-0.15201 ] (m4); NC1*-0.29812 ] (m5); [AC1*-0.18248 ] (m6); 
CC1*0.72513 (v4); NC1*0.43116 (v5); AC1*0.42376 (v6); 
[Out1] (oa2); 
[Out2] (ob2); 
%CG#2.C#3% 
 [CC1*0.08333 ] (m7); [NC1*0.86526 ] (m8); [AC1*0.94111 ] (m9); 
 CC1*1.13489 (v7); NC1*0.48030 (v8); AC1*0.44053 (v9); 
[Out1] (oa3); 
[Out2] (ob3); 
 
MODEL CONSTRAINT: 
NEW (y12); y12 = oa1-oa2; 
NEW (y13); y13 = oa1-oa3; 
NEW (y23); y23 = oa2-oa3; 
NEW (z12); z12 = ob1-ob2 
NEW (z13); z13 = ob1-ob3; 
NEW (z23); z23 = ob2-ob3; 
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Latent Transition Analysis: Configural Invariance. 

The estimation of a latent transition model is highly similar to the estimation of a multiple-group LPA 
with the exception that the latent categorical variable representing the observed group defined using 
the KNOWCLASS function (CG in the previous examples) is replaced by another unknown latent 
categorical variable representing profiles groups estimated at the second time point.  
CLASSES = c1 (3) c2 (3); 

 
Because of the similarity of the inputs, we do not comment the sequence of invariance tests in the next 
sections. In the basic LTA model, the %OVERALL% section states that membership into the profiles 
at the second time point (C2) is conditional on membership in the profiles estimated at the first time 
points (C1). This is necessary to estimate the individual transition probabilities over time. Then two 
sections of the inputs are used to define the profiles estimated at the first (MODEL C1:) and second 
(MODEL C2:) time points, where the profiles are defined by distinct variables reflecting the mixture 
indicators measured at either the first (e.g., AC1) or second (e.g., AC2) time point.  
%OVERALL% 
c2 on c1; 
MODEL C1:  
%c1#1% 
 [AC1 NC1 CC1] (m1-m3);  
AC1 NC1 CC1 (v1-v3);  
%c1#2% 
 [AC1 NC1 CC1] (m4-m6);  
AC1 NC1 CC1 (v4-v6);  
%c1#3% 
 [AC1 NC1 CC1] (m7-m9);  
AC1 NC1 CC1 (v7-v9);  
MODEL C2:  
%c2#1% 
[AC2 NC2 CC2] (mm1-mm3);  
AC2 NC2 CC2 (vv1-vv3);  
%c2#2% 
 [AC2 NC2 CC2] (mm4-mm6);  
AC2 NC2 CC2 (vv4-vv6);  
%c2#3% 
 [AC2 NC2 CC2] (mm7-mm9);  
AC2 NC2 CC2 (vv7-vv9);  

 

Latent Transition Analysis: Structural Invariance. 

%OVERALL% 
c2 on c1; 
MODEL C1:  
%c1#1% 
 [AC1 NC1 CC1] (m1-m3);  AC1 NC1 CC1 (v1-v3);  
%c1#2% 
 [AC1 NC1 CC1] (m4-m6);  AC1 NC1 CC1 (v4-v6);  
%c1#3% 
 [AC1 NC1 CC1] (m7-m9);  AC1 NC1 CC1 (v7-v9);  
MODEL C2:  
%c2#1% 
[AC2 NC2 CC2] (m1-m3);  AC2 NC2 CC2 (vv1-vv3);  
%c2#2% 
 [AC2 NC2 CC2] (m4-m6); AC2 NC2 CC2 (vv4-vv6);  
%c2#3% 
 [AC2 NC2 CC2] (m7-m9); AC2 NC2 CC2 (vv7-vv9);  
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Latent Transition Analysis: Dispersion Invariance  

%OVERALL% 
c2 on c1; 
MODEL C1:  
%c1#1% 
 [AC1 NC1 CC1] (m1-m3);  AC1 NC1 CC1 (v1-v3);  
%c1#2% 
 [AC1 NC1 CC1] (m4-m6);  AC1 NC1 CC1 (v4-v6);  
%c1#3% 
 [AC1 NC1 CC1] (m7-m9);  AC1 NC1 CC1 (v7-v9);  
MODEL C2:  
%c2#1% 
[AC2 NC2 CC2] (m1-m3);  AC2 NC2 CC2 (v1-v3);  
%c2#2% 
 [AC2 NC2 CC2] (m4-m6); AC2 NC2 CC2 (v4-v6);  
%c2#3% 
 [AC2 NC2 CC2] (m7-m9); AC2 NC2 CC2 (v7-v9);  

 

Latent Transition Analysis: Distributional Invariance.  

Labels are used to request that the sizes of the profiles be invariant over time.  
 
%OVERALL% 
c2 on c1; 
[ c1#1] (p1); 
[ c1#2] (p2); 
[ c2#1] (p1); 
[ c2#2] (p2); 
MODEL C1:  
%c1#1% 
 [AC1 NC1 CC1] (m1-m3);  AC1 NC1 CC1 (v1-v3);  
%c1#2% 
 [AC1 NC1 CC1] (m4-m6);  AC1 NC1 CC1 (v4-v6);  
%c1#3% 
 [AC1 NC1 CC1] (m7-m9);  AC1 NC1 CC1 (v7-v9);  
MODEL C2:  
%c2#1% 
[AC2 NC2 CC2] (m1-m3);  AC2 NC2 CC2 (v1-v3);  
%c2#2% 
 [AC2 NC2 CC2] (m4-m6); AC2 NC2 CC2 (v4-v6);  
%c2#3% 
 [AC2 NC2 CC2] (m7-m9); AC2 NC2 CC2 (v7-v9);  
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Latent Transition Analysis with Predictors: Relations freely estimated at both time points 

To ensure stability, starts values from the previously most invariant solution should be used.  
%OVERALL% 
c2 on c1; 
[ c1#1] (p1); [ c1#2] (p2); 
[ c2#1] (p1); [ c2#2] (p2); 
c1 ON Pred1; 
c2 ON Pred2; 
MODEL C1:  
%c1#1% 
 [AC1 NC1 CC1] (m1-m3);  AC1 NC1 CC1 (v1-v3);  
%c1#2% 
 [AC1 NC1 CC1] (m4-m6);  AC1 NC1 CC1 (v4-v6);  
%c1#3% 
 [AC1 NC1 CC1] (m7-m9);  AC1 NC1 CC1 (v7-v9);  
MODEL C2:  
%c2#1% 
[AC2 NC2 CC2] (m1-m3);  AC2 NC2 CC2 (v1-v3);  
%c2#2% 
 [AC2 NC2 CC2] (m4-m6); AC2 NC2 CC2 (v4-v6);  
%c2#3% 
 [AC2 NC2 CC2] (m7-m9); AC2 NC2 CC2 (v7-v9);  

 

Latent Transition Analysis with Predictors: Predictive Invariance.  

To ensure stability, starts values from the previously most invariant solution should be used.  
%OVERALL% 
c2 on c1; 
[ c1#1] (p1); [ c1#2] (p2); 
[ c2#1] (p1); [ c2#2] (p2); 
c1 ON Pred1 (pr1-pr2); ! one less label than the number of latent profiles 
c2 ON Pred2 (pr1-pr2); 
MODEL C1:  
%c1#1% 
 [AC1 NC1 CC1] (m1-m3);  AC1 NC1 CC1 (v1-v3);  
%c1#2% 
 [AC1 NC1 CC1] (m4-m6);  AC1 NC1 CC1 (v4-v6);  
%c1#3% 
 [AC1 NC1 CC1] (m7-m9);  AC1 NC1 CC1 (v7-v9);  
MODEL C2:  
%c2#1% 
[AC2 NC2 CC2] (m1-m3);  AC2 NC2 CC2 (v1-v3);  
%c2#2% 
 [AC2 NC2 CC2] (m4-m6); AC2 NC2 CC2 (v4-v6);  
%c2#3% 
 [AC2 NC2 CC2] (m7-m9); AC2 NC2 CC2 (v7-v9);  
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Latent Transition Analysis with Outcomes: Relations freely estimated at both time points 

To ensure stability, starts values from the previously most invariant solution should be used.  
%OVERALL% 
c2 on c1; 
[ c1#1] (p1); [ c1#2] (p2); 
[ c2#1] (p1); [ c2#2] (p2); 
MODEL C1:  
%c1#1% 
 [AC1 NC1 CC1] (m1-m3);  AC1 NC1 CC1 (v1-v3);  
[Out1] (oa1); 
%c1#2% 
 [AC1 NC1 CC1] (m4-m6);  AC1 NC1 CC1 (v4-v6);  
[Out1] (oa2); 
%c1#3% 
 [AC1 NC1 CC1] (m7-m9);  AC1 NC1 CC1 (v7-v9);  
[Out1] (oa3); 
MODEL C2:  
%c2#1% 
[AC2 NC2 CC2] (m1-m3);  AC2 NC2 CC2 (v1-v3);  
[Out2] (ob1); 
%c2#2% 
 [AC2 NC2 CC2] (m4-m6); AC2 NC2 CC2 (v4-v6);  
[Out2] (ob2); 
%c2#3% 
 [AC2 NC2 CC2] (m7-m9); AC2 NC2 CC2 (v7-v9);  
[Out2] (ob2); 
MODEL CONSTRAINT: 
NEW (y12); y12 = oa1-oa2; 
NEW (y13); y13 = oa1-oa3; 
NEW (y23); y23 = oa2-oa3; 
NEW (z12); z12 = ob1-ob2 
NEW (z13); z13 = ob1-ob3; 
NEW (z23); z23 = ob2-ob3; 
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Latent Transition Analysis with Outcomes: Explanatory Invariance 

To ensure stability, starts values from the previously most invariant solution should be used.  
%OVERALL% 
c2 on c1; 
[ c1#1] (p1); [ c1#2] (p2); 
[ c2#1] (p1); [ c2#2] (p2); 
MODEL C1:  
%c1#1% 
 [AC1 NC1 CC1] (m1-m3);  AC1 NC1 CC1 (v1-v3);  
[Out1] (oa1); 
%c1#2% 
 [AC1 NC1 CC1] (m4-m6);  AC1 NC1 CC1 (v4-v6);  
[Out1] (oa2); 
%c1#3% 
 [AC1 NC1 CC1] (m7-m9);  AC1 NC1 CC1 (v7-v9);  
[Out1] (oa3); 
MODEL C2:  
%c2#1% 
[AC2 NC2 CC2] (m1-m3);  AC2 NC2 CC2 (v1-v3);  
[Out2] (oa1); 
%c2#2% 
 [AC2 NC2 CC2] (m4-m6); AC2 NC2 CC2 (v4-v6);  
[Out2] (oa2); 
%c2#3% 
 [AC2 NC2 CC2] (m7-m9); AC2 NC2 CC2 (v7-v9);  
[Out2] (oa2); 
MODEL CONSTRAINT: 
NEW (y12); y12 = oa1-oa2; 
NEW (y13); y13 = oa1-oa3; 
NEW (y23); y23 = oa2-oa3; 
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Mixture Regression Analysis 

Mixture regression analyses specify a regression model in the %OVERALL% section of the input 
indicating here that (for illustration purposes) AC2 (AC measured at Time 2) is regressed (ON) a 
series of predictors from (AC1 NC1 CC1). Then, the profile-specific sections of the input request that 
these regression coefficients be freely estimated in all profiles. In the basic mixture regression model, 
the mean and variance of the outcome(s) also need to be freely estimated in each profiles as these 
respectively reflect the intercept sand residuals of the regressions.  
%OVERALL% 
AC2 ON AC1 NC1 CC1;  
%c#1% 
AC2 ON AC1 NC1 CC1;  
AC2; 
[AC2]; 
%c#2% 
AC2 ON AC1 NC1 CC1;  
AC2; 
[AC2]; 
%c#3% 
AC2 ON AC1 NC1 CC1;  
AC2; 
[AC2]; 
 
A more flexible (and perhaps realistic) representation also freely estimates the means (and variances) 
of the predictors in each profiles, resulting in a model that combines LPA (for predictors) and mixture 
regressions and provides results indicating how the regression differs as a function of latent profiles of 
employees defined based on their configuration on the predictors.  
%OVERALL% 
AC2 ON AC1 NC1 CC1;  
%c#1% 
AC2 ON AC1 NC1 CC1;  
AC2 AC1 NC1 CC1; 
[AC2 AC1 NC1 CC1]; 
%c#2% 
AC2 ON AC1 NC1 CC1;  
AC2 AC1 NC1 CC1; 
[AC2 AC1 NC1 CC1]; 
%c#3% 
AC2 ON AC1 NC1 CC1;  
AC2 AC1 NC1 CC1; 
[AC2 AC1 NC1 CC1]; 
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Multiple Group Mixture Regression Analysis: Configural Invariance  

This set-up is highly similar to the one used for the multiple groups LPA models. Here again, the 
KNOWCLASS option is used to define the status groups in the VARIABLE section:  
 
KNOWCLASS = cg (status = 1 status = 2);  
CLASSES = cg (2) c (3); 
 
Then the Model section describes the model of configural invariance. 
 
%OVERALL% 
c#1 on cg#1; 
c#2 on cg#1; 
AC2 ON AC1 NC1 CC1; 
%cg#1.c#1% 
AC2 ON AC1 NC1 CC1 (r1-r3);  
AC2 AC1 NC1 CC1 (m1-m4);  
[AC2 AC1 NC1 CC1] (v1-v4);  
%cg#1.c#2% 
AC2 ON AC1 NC1 CC1 (r11-r13);  
AC2 AC1 NC1 CC1 (m11-m14);  
[AC2 AC1 NC1 CC1] (v11-v14);  
%cg#1.c#3% 
AC2 ON AC1 NC1 CC1 (r21-r23);  
AC2 AC1 NC1 CC1 (m21-m24);  
[AC2 AC1 NC1 CC1] (v21-v24);  
%cg#2.c#1% 
AC2 ON AC1 NC1 CC1 (rr1-rr3);  
AC2 AC1 NC1 CC1 (mm1-mm4);  
[AC2 AC1 NC1 CC1] (vv1-vv4);  
%cg#2.c#2% 
AC2 ON AC1 NC1 CC1 (rr11-rr13);  
AC2 AC1 NC1 CC1 (mm11-mm14);  
[AC2 AC1 NC1 CC1] (vv11-vv14);  
%cg#2.c#3% 
AC2 ON AC1 NC1 CC1 (rr21-rr23);  
AC2 AC1 NC1 CC1 (mm21-mm24);  
[AC2 AC1 NC1 CC1] (vv21-vv24);  
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Multiple Group Mixture Regression Analysis: Regression Invariance 

%OVERALL% 
c#1 on cg#1; c#2 on cg#1; 
AC2 ON AC1 NC1 CC1; 
%cg#1.c#1% 
AC2 ON AC1 NC1 CC1 (r1-r3);  
AC2 AC1 NC1 CC1 (m1-m4); [AC2 AC1 NC1 CC1] (v1-v4);  
%cg#1.c#2% 
AC2 ON AC1 NC1 CC1 (r11-r13);  
AC2 AC1 NC1 CC1 (m11-m14); [AC2 AC1 NC1 CC1] (v11-v14);  
%cg#1.c#3% 
AC2 ON AC1 NC1 CC1 (r21-r23);  
AC2 AC1 NC1 CC1 (m21-m24); [AC2 AC1 NC1 CC1] (v21-v24);  
%cg#2.c#1% 
AC2 ON AC1 NC1 CC1 (r1-r3);  
AC2 AC1 NC1 CC1 (mm1-mm4); [AC2 AC1 NC1 CC1] (vv1-vv4);  
%cg#2.c#2% 
AC2 ON AC1 NC1 CC1 (r11-r13);  
AC2 AC1 NC1 CC1 (mm11-mm14); [AC2 AC1 NC1 CC1] (vv11-vv14);  
%cg#2.c#3% 
AC2 ON AC1 NC1 CC1 (r21-r23);  
AC2 AC1 NC1 CC1 (mm21-mm24); [AC2 AC1 NC1 CC1] (vv21-vv24);  
 

Multiple Group Mixture Regression Analysis: Structural Invariance 

%OVERALL% 
c#1 on cg#1; c#2 on cg#1; 
AC2 ON AC1 NC1 CC1; 
%cg#1.c#1% 
AC2 ON AC1 NC1 CC1 (r1-r3);  
AC2 AC1 NC1 CC1 (m1-m4); [AC2 AC1 NC1 CC1] (v1-v4);  
%cg#1.c#2% 
AC2 ON AC1 NC1 CC1 (r11-r13);  
AC2 AC1 NC1 CC1 (m11-m14); [AC2 AC1 NC1 CC1] (v11-v14);  
%cg#1.c#3% 
AC2 ON AC1 NC1 CC1 (r21-r23);  
AC2 AC1 NC1 CC1 (m21-m24); [AC2 AC1 NC1 CC1] (v21-v24);  
%cg#2.c#1% 
AC2 ON AC1 NC1 CC1 (r1-r3);  
AC2 AC1 NC1 CC1 (m1-m4); [AC2 AC1 NC1 CC1] (vv1-vv4);  
%cg#2.c#2% 
AC2 ON AC1 NC1 CC1 (r11-r13);  
AC2 AC1 NC1 CC1 (m11-m14); [AC2 AC1 NC1 CC1] (vv11-vv14);  
%cg#2.c#3% 
AC2 ON AC1 NC1 CC1 (r21-r23);  
AC2 AC1 NC1 CC1 (m21-m24); [AC2 AC1 NC1 CC1] (vv21-vv24);  
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Multiple Group Mixture Regression Analysis: Dispersion Invariance 

%OVERALL% 
c#1 on cg#1; c#2 on cg#1; 
AC2 ON AC1 NC1 CC1; 
%cg#1.c#1% 
AC2 ON AC1 NC1 CC1 (r1-r3);  
AC2 AC1 NC1 CC1 (m1-m4); [AC2 AC1 NC1 CC1] (v1-v4);  
%cg#1.c#2% 
AC2 ON AC1 NC1 CC1 (r11-r13);  
AC2 AC1 NC1 CC1 (m11-m14); [AC2 AC1 NC1 CC1] (v11-v14);  
%cg#1.c#3% 
AC2 ON AC1 NC1 CC1 (r21-r23);  
AC2 AC1 NC1 CC1 (m21-m24); [AC2 AC1 NC1 CC1] (v21-v24);  
%cg#2.c#1% 
AC2 ON AC1 NC1 CC1 (r1-r3);  
AC2 AC1 NC1 CC1 (m1-m4); [AC2 AC1 NC1 CC1] (v1-v4);  
%cg#2.c#2% 
AC2 ON AC1 NC1 CC1 (r11-r13);  
AC2 AC1 NC1 CC1 (m11-m14); [AC2 AC1 NC1 CC1] (v11-v14);  
%cg#2.c#3% 
AC2 ON AC1 NC1 CC1 (r21-r23);  
AC2 AC1 NC1 CC1 (m21-m24); [AC2 AC1 NC1 CC1] (v21-v24);  
 

Multiple Group Mixture Regression Analysis: Distribution Invariance 

The statements making profile membership conditional on status are simply taken out.  
 
%OVERALL% 
AC2 ON AC1 NC1 CC1; 
%cg#1.c#1% 
AC2 ON AC1 NC1 CC1 (r1-r3);  
AC2 AC1 NC1 CC1 (m1-m4); [AC2 AC1 NC1 CC1] (v1-v4);  
%cg#1.c#2% 
AC2 ON AC1 NC1 CC1 (r11-r13);  
AC2 AC1 NC1 CC1 (m11-m14); [AC2 AC1 NC1 CC1] (v11-v14);  
%cg#1.c#3% 
AC2 ON AC1 NC1 CC1 (r21-r23);  
AC2 AC1 NC1 CC1 (m21-m24); [AC2 AC1 NC1 CC1] (v21-v24);  
%cg#2.c#1% 
AC2 ON AC1 NC1 CC1 (r1-r3);  
AC2 AC1 NC1 CC1 (m1-m4); [AC2 AC1 NC1 CC1] (v1-v4);  
%cg#2.c#2% 
AC2 ON AC1 NC1 CC1 (r11-r13);  
AC2 AC1 NC1 CC1 (m11-m14); [AC2 AC1 NC1 CC1] (v11-v14);  
%cg#2.c#3% 
AC2 ON AC1 NC1 CC1 (r21-r23);  
AC2 AC1 NC1 CC1 (m21-m24); [AC2 AC1 NC1 CC1] (v21-v24);  
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Multiple Group Mixture Regression Analysis with Predictors: Relations Freely Estimated Across 
Subpopulations 

 
To ensure stability, starts values from the previously most invariant solution should be used.  
%OVERALL% 
AC2 ON AC1 NC1 CC1; 
c#1-c#2 ON Pred1@0 Pred2@0; 
%cg#1.c#1% 
AC2 ON AC1 NC1 CC1 (r1-r3);  
AC2 AC1 NC1 CC1 (m1-m4); [AC2 AC1 NC1 CC1] (v1-v4);  
%cg#1.c#2% 
AC2 ON AC1 NC1 CC1 (r11-r13);  
AC2 AC1 NC1 CC1 (m11-m14); [AC2 AC1 NC1 CC1] (v11-v14);  
%cg#1.c#3% 
AC2 ON AC1 NC1 CC1 (r21-r23);  
AC2 AC1 NC1 CC1 (m21-m24); [AC2 AC1 NC1 CC1] (v21-v24);  
%cg#2.c#1% 
AC2 ON AC1 NC1 CC1 (r1-r3);  
AC2 AC1 NC1 CC1 (m1-m4); [AC2 AC1 NC1 CC1] (v1-v4);  
%cg#2.c#2% 
AC2 ON AC1 NC1 CC1 (r11-r13);  
AC2 AC1 NC1 CC1 (m11-m14); [AC2 AC1 NC1 CC1] (v11-v14);  
%cg#2.c#3% 
AC2 ON AC1 NC1 CC1 (r21-r23);  
AC2 AC1 NC1 CC1 (m21-m24); [AC2 AC1 NC1 CC1] (v21-v24);  
MODEL cg: 
%cg#1% 
c#1-c#2 ON  Pred1 Pred2; 
%cg#2% 
c#1-c#2 ON  Pred1 Pred2; 

 
Multiple Group Mixture Regression Analysis with Predictors: Predictive Invariance 

 
To ensure stability, starts values from the previously most invariant solution should be used.  
%OVERALL% 
AC2 ON AC1 NC1 CC1; 
c#1-c#2 ON Pred1 Pred2; 
%cg#1.c#1% 
AC2 ON AC1 NC1 CC1 (r1-r3);  
AC2 AC1 NC1 CC1 (m1-m4); [AC2 AC1 NC1 CC1] (v1-v4);  
%cg#1.c#2% 
AC2 ON AC1 NC1 CC1 (r11-r13);  
AC2 AC1 NC1 CC1 (m11-m14); [AC2 AC1 NC1 CC1] (v11-v14);  
%cg#1.c#3% 
AC2 ON AC1 NC1 CC1 (r21-r23);  
AC2 AC1 NC1 CC1 (m21-m24); [AC2 AC1 NC1 CC1] (v21-v24);  
%cg#2.c#1% 
AC2 ON AC1 NC1 CC1 (r1-r3);  
AC2 AC1 NC1 CC1 (m1-m4); [AC2 AC1 NC1 CC1] (v1-v4);  
%cg#2.c#2% 
AC2 ON AC1 NC1 CC1 (r11-r13);  
AC2 AC1 NC1 CC1 (m11-m14); [AC2 AC1 NC1 CC1] (v11-v14);  
%cg#2.c#3% 
AC2 ON AC1 NC1 CC1 (r21-r23);  
AC2 AC1 NC1 CC1 (m21-m24); [AC2 AC1 NC1 CC1] (v21-v24);  
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Multiple Group Mixture Regression Analysis with Outcomes: Relations Freely Estimated Across 
Subpopulations 

 
To ensure stability, starts values from the previously most invariant solution should be used.  
%OVERALL% 
AC2 ON AC1 NC1 CC1; 
%cg#1.c#1% 
AC2 ON AC1 NC1 CC1 (r1-r3);  
AC2 AC1 NC1 CC1 (m1-m4); [AC2 AC1 NC1 CC1] (v1-v4); 
[Out1] (oa1); 
[Out2] (ob1); 
%cg#1.c#2% 
AC2 ON AC1 NC1 CC1 (r11-r13);  
AC2 AC1 NC1 CC1 (m11-m14); [AC2 AC1 NC1 CC1] (v11-v14);  
[Out1] (oa2); 
[Out2] (ob2); 
%cg#1.c#3% 
AC2 ON AC1 NC1 CC1 (r21-r23);  
AC2 AC1 NC1 CC1 (m21-m24); [AC2 AC1 NC1 CC1] (v21-v24);  
[Out1] (oa2); 
[Out2] (ob2); 
%cg#2.c#1% 
AC2 ON AC1 NC1 CC1 (r1-r3);  
AC2 AC1 NC1 CC1 (m1-m4); [AC2 AC1 NC1 CC1] (v1-v4);  
[Out1] (oaa1); 
[Out2] (obb1); 
%cg#2.c#2% 
AC2 ON AC1 NC1 CC1 (r11-r13);  
AC2 AC1 NC1 CC1 (m11-m14); [AC2 AC1 NC1 CC1] (v11-v14);  
[Out1] (oaa2); 
[Out2] (obb2); 
%cg#2.c#3% 
AC2 ON AC1 NC1 CC1 (r21-r23);  
AC2 AC1 NC1 CC1 (m21-m24); [AC2 AC1 NC1 CC1] (v21-v24);  
[Out1] (oaa3); 
[Out2] (obb3); 
MODEL CONSTRAINT: 
NEW (y12); y12 = oa1-oa2; 
NEW (y13); y13 = oa1-oa3; 
NEW (y23); y23 = oa2-oa3; 
NEW (z12); z12 = ob1-ob2 
NEW (z13); z13 = ob1-ob3; 
NEW (z23); z23 = ob2-ob3; 
NEW (yy12); yy12 = oaa1-oaa2; 
NEW (yy13); yy13 = oaa1-oaa3; 
NEW (yy23); yy23 = oaa2-oaa3; 
NEW (zz12); zz12 = obb1-obb2 
NEW (zz13); zz13 = obb1-obb3; 
NEW (zz23); zz23 = obb2-obb3; 
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Multiple Group Mixture Regression Analysis with Outcomes: Explanatory Invariance  
 
To ensure stability, starts values from the previously most invariant solution should be used.  
%OVERALL% 
AC2 ON AC1 NC1 CC1; 
%cg#1.c#1% 
AC2 ON AC1 NC1 CC1 (r1-r3);  
AC2 AC1 NC1 CC1 (m1-m4); [AC2 AC1 NC1 CC1] (v1-v4); 
[Out1] (oa1); 
[Out2] (ob1); 
%cg#1.c#2% 
AC2 ON AC1 NC1 CC1 (r11-r13);  
AC2 AC1 NC1 CC1 (m11-m14); [AC2 AC1 NC1 CC1] (v11-v14);  
[Out1] (oa2); 
[Out2] (ob2); 
%cg#1.c#3% 
AC2 ON AC1 NC1 CC1 (r21-r23);  
AC2 AC1 NC1 CC1 (m21-m24); [AC2 AC1 NC1 CC1] (v21-v24);  
[Out1] (oa2); 
[Out2] (ob2); 
%cg#2.c#1% 
AC2 ON AC1 NC1 CC1 (r1-r3);  
AC2 AC1 NC1 CC1 (m1-m4); [AC2 AC1 NC1 CC1] (v1-v4);  
[Out1] (oa1); 
[Out2] (ob1); 
%cg#2.c#2% 
AC2 ON AC1 NC1 CC1 (r11-r13);  
AC2 AC1 NC1 CC1 (m11-m14); [AC2 AC1 NC1 CC1] (v11-v14);  
[Out1] (oa2); 
[Out2] (ob2); 
%cg#2.c#3% 
AC2 ON AC1 NC1 CC1 (r21-r23);  
AC2 AC1 NC1 CC1 (m21-m24); [AC2 AC1 NC1 CC1] (v21-v24);  
[Out1] (oa3); 
[Out2] (ob3); 
MODEL CONSTRAINT: 
NEW (y12); y12 = oa1-oa2; 
NEW (y13); y13 = oa1-oa3; 
NEW (y23); y23 = oa2-oa3; 
NEW (z12); z12 = ob1-ob2 
NEW (z13); z13 = ob1-ob3; 
NEW (z23); z23 = ob2-ob3; 
 

 

 



Supplements for Person-Centered Research Strategies   S36 

Appendix D 

Growth Mixture Analyses 

For y observed indicators and k latent profiles, LPA is expressed as (e.g., Peugh & Fan, 2013):  
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This model decomposes the variance into between-profile (the first term) and within-profile (the 

second term) components, where the profile-specific means ( yk ) and variances ( 2
yk )are expressed 

as a function of the density function k  reflecting the proportion of participants in each profile.  

GMA are built from the combination of this LPA model with latent curve models (LCM, see 

Bentein, this volume; Bollen & Curran, 2006; McArdle & Epstein, 1987; Meredith & Tisak, 1990). 

GMA thus identify subgroups (i.e., profiles) that follow distinct trajectories (e.g., Morin, Maïano et al. 

2011). A linear GMA for the repeated measure yit for individual i at time t is estimated within k distinct 

levels (k = 1, 2, …, K) of the unobserved latent categorical variable c representing the profiles, with 

each individual having a probability of membership in the k levels.  
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The k subscript indicates that most parameters are allowed to differ across profiles. This means 

that each profile can be defined by its own LCM. In this equation, iyk  and iyk  represent the random 

intercept and random linear slope of the trajectory for individual i in profile k; yk  and yk  

represent the average intercept and linear slope in profile k and yik  and yik  represent the 

variability of the intercepts and slopes across cases within profiles. yitk  represents the time- 

individual- and class- specific residual. These errors are generally allowed to vary across time. kp  
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defines the probability that an individual i belongs to class k with all 0kp   and 
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variance parameters ( yik , yik ) have a mean of zero and a yk variance-covariance matrix:  
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In these models, Time is represented by t , the factor loading matrix relating the time-specific 

indicators to the linear slope factor. Time is coded to reflect the passage of time and is thus a function 

of the intervals between measurement points. Assuming a study including four equally space monthly 

measurement points of newcomers starting a new employment, it is reasonable to set the intercept at 

Time 1 [E( iyk ) = μy1k]. Thus, for a linear GMM, time would be coded 1 = 0, 2 = 1, 3 = 2, 4  = 3. 

For additional discussion of time codes, the readers should consult Biesanz, Deeb-Sossa, Papadakis, 

Bollen, and Curran (2004) and Metha and West (2000).  

Alternative Functional Forms (Shape) for the Trajectories 

Linear GMA. In the estimation of GMA, a first decision that has to be taken is related to the 

expected shape of the trajectories. The most common functional forms are part of the polynomial 

family, with the two most common being the linear and quadratic forms. The linear GAM model, 

presented in equations 1 to 4, assumes that all longitudinal trajectories will be linear, characterized 

either by a steady increase over time, a steady decrease over time, or longitudinal stability. This is the 

most basic form of GMA, and its estimation requires a minimum of three measurement points.  

Quadratic GMA. A curvilinear (quadratic) GMA adds one quadratic slope factor to the model 

(e.g., Diallo, Morin, & Parker, 2014), providing a way to model U-shape, or inverted U-Shape 

trajectories. The estimation of a quadratic slope requires four time points. In this model, iyk  remains 

defined as in equation 2, t  remains coded as in the linear model, and iyk1 and iyk2 respectively 

represent the random linear and quadratic slopes for individual i in profile k. 
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Piecewise GMA. Piecewise GMA are particularly useful when there is an expected transition point 

over the course of the study (transition, job change, intervention, etc.). Piecewise models allow for the 

estimation of a change in the direction of longitudinal trajectories before and after a transition point. 

Typically, this is reflected by the integration of two linear slopes to the model, the first representing the 

pre-transition slope, and the second representing the post-transition slope (e.g., Diallo & Morin, 2015):  
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In this model, iyk  is defined as in equation 2, yk  is defined as in equation 8, iyk1 and iyk2  are 

linear slopes reflecting the growth occurring before and after the transition. In this model, two distinct 

sets of time scores t1  and t2 are used to reflect the passage of time before, and after the transition. 

Assuming a study including six equally spaced measurements points with an intercept located at Time 

1 [E( iyk ) = μy1k], and a transition point located after the third time point, t1 would be coded {0, 1, 2, 

2, 2, 2} for time 11 t  to 61 t  (reflecting linear growth for the first three time points after which the 

equal loadings allow the remaining growth information to be absorbed by the second linear slope 

factor) and t2 would be {0, 0, 0, 1, 2, 3} for time 12 t  to 62 t  (reflecting linear growth between the 

last three time points). Piecewise GMA require at least 2 measurement points before and after the 

transition point, with a total of five measurement point in total (e.g., Diallo & Morin, 2015). With 

additional time points, the piecewise model may be extended to model curvilinear trends. 

Latent Basis GMA. A limitation of typical implementations of GMA is that the same functional 

form needs to be estimated in all profiles. This requirement is not, however, as restrictive as it seems 

given that it is easy to constrain one or many of the slope factors to be zero in specific profiles. For 
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instance, by constraining the quadratic slope to be zero in one profile within a quadratic GMA, one 

constrains this profile to follow a linear trajectory. Similarly, by constraining the second slope to be 

equal to the first one in a piecewise model, one constrains the trajectories to follow the same course 

before and after the transition point. More restrictive is the fact that all of these models involve 

estimating profiles that remain within the same family of polynomial trajectories (i.e., it is not possible 

to combine the estimation of exponential, logistic, and quadratic trajectories within the same model). 

The latent basis GMA provides an interesting way around this problem. In LCM/GMA, only two time 

codes t  need to be fixed to 0 and 1 for identification purposes, while the remaining codes can be 

freely estimated (Ram & Grim, 2009). As a result, the slope factor represents the total amount of 

change occurring between these two time points, and the loadings reflect the proportion of the total 

change occurring at specific time points – thus providing a way to estimate GMA without imposing 

any functional form on the trajectories. When these loadings are freely estimated across profiles, the 

latent basis model thus provides a way to estimate completely distinct trajectories across profiles (for 

an example, see Morin, Maïano et al., 2013), without imposing any functional shape.  

The latent basis model is expressed as in equations 1 to 4, but t-2 time codes are freely estimated 

in t . This model further provides the possibility to freely estimate these t-2 times codes in all profiles 

so that t  becomes tk , allowing for the extraction of trajectories differing completely in shape across 

profiles. In this model, yk  then reflects the total change occurring between the two time points 

codes 0 and 1, and the freely estimated loadings represent the proportion of change ( yk ) occurring 

at each specific time point (and come with significance tests).  

Additional non-linear GMA specifications. For a description of additional functional forms, 

interested readers should consult: Blozis, 2007; Browne and DuToit, 1991; Grimm, Ram, and 

Hamagami, 2011; Grimm et al., 2010; Ram and Grimm, 2007, 2009.  

Alternative Parameterizations of GMA  

As discussed above, LPA models can be estimated using more or less restricted parameterizations 

depending on whether the variances of the profile indicators are constrained to be invariant across 

profiles. In GMA, the situation is even more complex as the profiles can be defined while allowing any 
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or all parameters from a LCM (the mean of the growth factors, the variances-covariances of the growth 

factors, the time-specific residuals of the growth factors) to be freely estimated in all profiles. 

However, fully variant GMA are seldom estimated, potentially because more complex models run 

more frequently into estimation and convergence problems. Among simpler parameterizations, Nagin’s 

(1999) group-based latent class growth analysis (LCGA) constrains the variances of the growth factors 

(e.g., iyk , iyk1 , iyk2 ) to be zero, thus taking out the latent variance-covariance matrix from the 

model ( yk  = 0). LCGA thus force all members to follow the exact same trajectory. LCGA also 

typically assumes the time-specific residuals to be equal across profiles ( yityitk   ). Another 

common restricted GMA is linked to the defaults of the Mplus package (Muthén & Muthén, 2014), 

which freely estimate yk , yk1 and yk2  in all profiles but constrain the latent variance-

covariance parameters and the residuals to be equal across the profiles ( yyk   and yityitk   ).  

Although these restrictions are common, simulation studies have shown that similar restrictions 

could result in the over-extraction of latent classes and biased parameter estimates in the context of 

mixture models (e.g., Bauer & Curran, 2004; Enders & Tofighi, 2008; Lubke & Muthén, 2007; Lubke 

& Neale, 2006, 2008; Magidson & Vermunt, 2004). In discussing these restrictions, Morin, Maïano et 

al. (2011) presented them as untested invariance assumptions that are unlikely to hold in real life and 

generally fails to be supported when empirically tested. Using a real data set, they further showed that 

these restricted parameterizations could result in drastically different conclusions. Unfortunately, 

arguments supporting the adequacy of these restricted parameterizations are seldom provided in 

applied research, and tests of these assumptions (which are easy to conduct using the information 

criteria and LRTs) are almost never implemented.  

As for LPA, more flexible models are likely to provide a much richer perspective, although the 

ability to estimate more flexible models is likely to be limited with smaller samples, or fewer time 

points. For this reason, we recommend to always start with the estimation of more complex models 

allowing the profiles to be defined based on the complete LCM, and then to slowly impose constraints 

when less restricted models fail to converge on proper solutions. It should be noted that, as for LCM, 
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sample size issues for GMA are not limited to the number of participants, but it is also necessary to 

take into account the number of measurement points so that more measurement occasions can offset 

sample size limitations (Diallo & Morin, 2015; Diallo, Morin, & Parker, 2014).  

In sum, whenever possible, we suggest that GMA be estimated with a fully independent within-

profile LCM: yk , yk1 , yk2 , yik , yik1 , yik2 , yk , yitk , and even tk  in latent basis 

models. Should GMM users face convergence problems, we suggest that the following sequence of 

constraints should be implemented: (1) yitk  = yit ; (2) yk1 , yk2 , yk21 = y1 , y2 , 

y21 ; (3) yk  = y ; (4) yk  = 0. However, this sequence should not be followed blindly and 

should be adapted to the specific research question and context.  

Input for a Linear GMA  

In LCM, the “I S |” function serves as a shortcut to define longitudinal intercepts and slope parameters 

and are generally followed by a specification of the time-varying indicators and their time codes 

(loadings on the slope factor). In this input, we request the means of the intercepts and slope factors ([I 

S];), their variances (I S;) and covariances (I WITH S;) and all time specific residuals (AC1, AC2, 

AC3, AC4, AC5, AC6;) be freely estimated in all profiles. We assume here six repeated measures of 

AC, equally spaced, with an intercept located at Time 1.  

 
%OVERALL% 
I S | AC1@0 AC2@1 AC3@2 AC4@3 AC5@4 AC6@5; 
%c#1% 
I S; [I S]; 
I WITH S; 
AC1 AC2 AC3 AC4 AC5 AC6; 
%c#2% 
I S; [I S]; 
I WITH S; 
AC1 AC2 AC3 AC4 AC5 AC6; 
%c#3% 
I S; [I S]; 
I WITH S; 
AC1 AC2 AC3 AC4 AC5 AC6; 
 
The following function provides plots of the trajectories.  

PLOT:  
TYPE IS PLOT3; 
SERIES = CP4-CS4(*);   
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Input for a Quadratic GMA  

A quadratic slope factor (Q) is simply added to the previous model.  

%OVERALL% 
I S Q | AC1@0 AC2@1 AC3@2 AC4@3 AC5@4 AC6@5; 
%c#1% 
I S Q; 
[I S Q]; 
I WITH S Q; 
S WITH Q;  
AC1 AC2 AC3 AC4 AC5 AC6; 
%c#2% 
I S Q; 
[I S Q]; 
I WITH S Q; 
S WITH Q;  
AC1 AC2 AC3 AC4 AC5 AC6; 
%c#3% 
I S Q; 
[I S Q]; 
I WITH S Q; 
S WITH Q;  
AC1 AC2 AC3 AC4 AC5 AC6; 
 

Input for a Piecewise GMA 

Two linear slope factors (S1 and S2) are defined to represent change before and after the transition. 

%OVERALL% 
I S1 | AC1@0 AC2@1 AC3@2 AC4@2 AC5@2 AC6@2; 
I S2 | AC1@0 AC2@0 AC3@0 AC4@1 AC5@2 AC6@3; 
%c#1% 
I S1 S2; 
[I S1 2]; 
I WITH S1 S2; 
S WITH S2;  
AC1 AC2 AC3 AC4 AC5 AC6; 
%c#2% 
I S1 S2; 
[I S1 2]; 
I WITH S1 S2; 
S WITH S2;  
AC1 AC2 AC3 AC4 AC5 AC6; 
%c#3% 
I S1 S2; 
[I S1 2]; 
I WITH S1 S2; 
S WITH S2;  
AC1 AC2 AC3 AC4 AC5 AC6; 
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Input for a Latent Basis GMA 

In a latent basis model, two loadings (typically the first and last) need to be respectively fixed to 0 and 

1 (@0 and @1) while the others are freely estimated. Here, we also request that these be freely 

estimated in all profiles by repeating this function in the profile-specific sections.  

%OVERALL% 
I S | AC1@0 AC2* AC3* AC4* AC5* AC6*; 
%c#1% 
I S | AC1@0 AC2* AC3* AC4* AC5* AC6*; 
I S; 
[I S]; 
I WITH S; 
AC1 AC2 AC3 AC4 AC5 AC6; 
%c#2% 
I S | AC1@0 AC2* AC3* AC4* AC5* AC6*; 
I S; 
[I S]; 
I WITH S; 
AC1 AC2 AC3 AC4 AC5 AC6; 
%c#3% 
I S | AC1@0 AC2* AC3* AC4* AC5* AC6*; 
I S; 
[I S]; 
I WITH S; 
AC1 AC2 AC3 AC4 AC5 AC6; 
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